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From Classical Dynamics to Continuous Time 
Random Walks 

Robert Zwanzig I 

The migration of a classical dynamical system between regions of configuration 
space can be treated as a continuous time random walk between these regions. 
Derivation of a classical analog of the quantum mechanical generalized master 
equation provides expressions for the waiting time distribution in terms of 
transition memory functions. A short memory approximation to these memory 
functions is equivalent to the well-known transition state method. An example is 
discussed for which this approximation seems reasonable but is entirely wrong. 
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1. I N T R O D U C T I O N  

A theory of the migrat ion of a dynamical  system between regions of 
configurat ion space m a y  be of value in unders tanding the metastabili ty of 
supercooled liquids. Under  certain reasonable conditions, this migrat ion is 
described by a generalized master  equation, or equivalently, a cont inuous 
time r a n d o m  walk. The generalized master  equat ion contains transition 
memory  kernels, which are related to waiting time distributions. As usual, 
these kernels are given by formal  expressions containing projected Liouville 
operators, and are not  likely to be easily calculated. However,  a short 
memory  approximat ion  to the transition memory  kernels is easy to obtain, 
and is the classical analog of Eyring's  " theory of absolute reaction rates," 
well known to physical  chemists. 

Much  of the relevant theoretical work has already been done, in 
somewhat  different form, in connect ion with chemical  kinetics31-4) The 
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connection between generalized master equations and continuous time 
random walks is well known. (s) A recent review by MontroU and Wes(6) 
describes in detail the general ideas of continuous time random walks, and 
gives many references. 

Of particular interest is the short memory approximation to transition 
memory kernels, since this is likely to be all that one can calculate explicitly 
in most cases. Moreover, ad hoc attempts to model complex dynamical 
processes are usually based on a short memory approximation. This, 
however, may not always be safe: at the end of this article, an example is 
given in which the short memory approximation leads to quite erroneous 
results. 

The first part of the article deals with the generalized master equation 
describing transitions between regions of configuration space. This is fol- 
lowed by a brief discussion of the corresponding continuous time random 
walk. Then the short memory approximation is presented. In the final 
section, a special dynamical model is discussed. 

2, GENERALIZED MASTER EQUATION 

The standard derivation of the quantum mechanical master equation is 
based on a projection of the quantum mechanical Liouville equation onto 
the subspace of the probabilities of occupation of quantum states. The 
classical counterpart is a projection onto cells in phase space; the classical 
master equation determines the time evolution of the probability of finding 
a system in a certain cell in phase space. 

In this article, we restrict attention to cells in configuration space 
rather than in the complete phase space. 

The state of the system, i.e., a point in phase space, is denoted by X. 
The position in configuration space is Q. The motion of the system is 
governed by the Liouville operator L. The state at time t is given by 
X(t) = exp(tL)X. Cells in configuration space are denoted by 

S~ ( Q ) = 1 if Q is in cell a 

-- 0 otherwise (1) 

The cells do not overlap, and they span the complete configuration space, 

S~(Q)SB(Q)  = S~(Q)8~B 
(2) 

S~ ( Q ) = 1 for all Q. 
O[ 

Averages are taken with the phase space distribution function f (X,  t). 
The initial distribution is f (X,  0), and the equilibrium distribution is feq(X). 
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Time-dependent averages are denoted by 

( A ; t )  = f dXA (X)f(X, t) (3) 

and equilibrium averages are denoted by (A),  without any time variable. 
The average of the cell characteristic function So(Q) is the probability 
P~(t) that the system is in cell a at time t, 

(S~( Q); t) = P~(t) (4) 

These are the quantities of interest here. The equilibrium average and 
second moment are needed: 

(S~(Q)) = w~, (S~(Q)SB(Q)) = w~8~B (5) 

Now we use the well-known Mori algorithm to find Langevin equa- 
tions of motion for the set of observables (S~(Q)).  Since the application of 
this algorithm is straightforward, details are omitted. A compressed nota- 
tion is used, and subscripts are left out. We need the inner product 

(A,B) = (AB) (6) 

and the projector 

PB = ( B , S ) .  w -1- S (7) 

onto the subspace of linear combinations of the S's. The systematic 
frequency if~ = (LS, S). (S, S)-1 vanishes, because S depends on coordi- 
nates only, and LS is linear in momentum. The "random force" is 

F~(t) = exp[ t(1 - P )L] (1 - P)LS~( O ) (8) 

Because PLS = 0, the terminal (1 - P)  may be replaced by 1. The transi- 
tion memory kernel is 

K~(t)= (F](t),Fl~(O))/w~= (exp[ t (1 -  P)LILS~,LS ~ )/w~ (9) 

The generalized Langevin equation is 

d S~( t )=  dt - s  K~p(t')Sl~(t-t')+ F2(t) (I0) 

This is still a formally exact result. 
As is always so, this result is useful only when the "random force" 

term can be neglected. The usual argument is as follows: If the initial 
distribution deviates linearly from equilibrium in the dynamical variables of 
interest, the average of F~(t) is second order in deviations from equilibrium. 
Then the resulting averaged equation is valid for linear transport processes. 
In the present instance, we can be somewhat more general. Any function 
G(S) of the S's can be written as a linear combination of the S's because 
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S~S B = S~6~. If the initial distribution has the form 

f (X,  0) = feq(X)G(S) (I 1) 

then the average of the random force vanishes identically, and the general- 
ized master equation for the occupation probabilities P~(t) is simply 

P ~ ( t ) = -  dt' K~r t') (12) 

This choice of initial ensemble is a classical analog to the quantum 
mechanical choice of an initially diagonal density matrix. 

3. THE WAITING TIME DISTRIBUTION 

Since the main ideas of the theory of continuous time random walks 
were reviewed recently by Montroll and West, (6) this section will contain 
only some necessary definitions and a statement of results. 

Instead of talking about a random walker making sudden jumps 
between lattice sites, we speak of a dynamical system moving between cells 
in configuration space. The system remains in cell fi for some length of 
time, and then suddenly leaves it for another cell a. The waiting time 
distribution for this transition is denoted by q~a(t), so that +~B(t)dt is the 
probability that the system makes its first move from cell fl to cell a in the 
time interval (t, t + dt). This is the fundamental quantity of CTRW theory. 
[This differs slightly in notation from the Montroll-West review. They use 
the same waiting time distribution +(t) for each lattice site, and combine it 
with the transition rate p ~  for jumps between the sites fi and a. Their 
quantity q~(t)p,~ corresponds to our q~(t).  It is easy to reconstruct their 
arguments using the more general ~/~(t)]. 

When the waiting time distribution is given for all pairs of cells, and 
the initial probabilities P~(0) are specified, then the distribution P~(t) is 
fully determined at any later time. The result is given most simply using 
Laplace transforms. The transform variable is e, and the transform of any 
function f(t) is f(e). The result, in a compressed notation, is 

But the generalized master equation provides another exact expression for 
the same quantity, 

On comparing these two formulas, it is easy to extract a relation between 
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the waiting time distribution and the transition memory kernels, 
A A A 

(15) 
~,~ = 0 

A simple and well-known consequence is that if the transition memory- 
kernels are independent of e (the "Markoffian" approximation), then the 
waiting time distributions are exponentially damped in time, and vice versa. 

In the present treatment of movement between cells in configuration 
space, just as in lattice random walks, there is no technical advantage in the 
CTRW language (although there is often a pictorial advantage). All correct 
statements are fully equivalent to correct statements in the GME language. 
The advantage of the GME approach is that it provides expressions for the 
transition memory kernels. 

4. THE SHORT M E M O R Y  APPROXIMATION 

The short memory approximation to the transition memory kernels is 
easy to work out. We start by eliminating the projection from K, using a 
familiar procedure. (7'8) The unprojected memory kernel is defined by 

~ (  t) = (exp( tL)LS~ , LS B )/w~ (16) 

Then the Laplace transforms of K and X are related by the matrix equation 

/ ( - -  E~/(c - ~) (17) 

In the short memory approximation, the complete memory kernel /( is 
replaced by its large e limit, K(oo). This is equivalent to approximating the 
time dependence of K(t) by a delta function of time. In the large E limit, 
Eq. (17) provides the relationship 

K ( ~ )  = ~(o~) (18) 

where X(~) is the large ~ limit of X(c). Thus the short-time behavior of K(t) 
is approximated by the short-time behavior of ~(t). At long times, of 
course, the two functions may be quite different. In particular, the limit 

A 

---> 0 of ~ must vanish, while the corresponding limit of K need not vanish. 
In effect, the short-time behavior of ~(t) is used to guess at the complete 
time behavior of K(t). 

The short-time behavior of ~(t) can be found by a procedure that is 
essentially the same as in Ref. 1. First, we get an explicit expression for 
LS~(Q) = (LQ).AQS~(Q). The first factor, LQ, is the velocity J in 
configuration space. The second factor, VQS~(Q), vanishes everywhere 
except on the boundary B~ of the region a, where it has delta function 
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behavior. We define the outward normal to the surface B e as n(B~): then 

VQS~ = - r  Q - B~)  (19) 

where the integral is taken over the whole surface of region a, and 
8( Q - B) is a delta function in the full configuration space. The quantity 
n ( B ~ ) .  J = J~(B,O is the normal flux outward from the region. Thus we 
have 

LS~ = - ~ d B ~ J n ( B  ~ )8 (  Q - B~ ) (20) 

Now the memory kernel can be written as 

XeB ( t)wB = ( L S B e x p (  t L ) L S ~ )  

For small t, we can expand Q ( t )  = Q + t L Q  + . . . .  Q + tJ  + �9 �9 �9 . We 
put this into the second delta function and combine it with the first to get 
8 ( Q -  B / j ) 8 ( B r  e + t J (B /~ )+  . . .  ). These are still delta functions in 
the full configuration space. We want to separate off a one-dimensional 
delta function in the direction normal to the boundary, leaving a (N - 1)- 
dimensional delta function 8z along the boundary. For small t, the impor- 
tant configurations are those for which B~ ~ B~. Let (a f t )  denote the 
common boundary of the region a and ft. If B e is close to B~, the 
difference vector ~B = B~ - B~ is tangent to the common boundary (a f t ) .  
Next, we separate J into its normal part J .  n ( B )  and its tangential part AJ. 
Now we can separate the delta function, 

8(B/~ - B e + t J )  = 8 ( t J , ) S x ( t A J  - A B  ) (22) 

The integration over B/~ is restricted to the common boundary (aft) and the 
integration over B e is replaced by integration over the small difference AB. 
The latter integration removes the ( N -  1)-dimensional delta function, 
leaving the short memory approximation 

+ +.>(:+: +-. <,3> 

Taking the Laplace transform removes 8 ( 0  and introduces a factor 1/2. In 
the short memory approximation for the transition memory kernel K, we 
use/~ ~ ~, so that (for a v ~ B) 

This is the classical analog of Eyring's well-known transition state formula 
for the rate of passage from region fl to region a. Note that it has the form 
of a probability of finding the system on the common boundary, times the 
normal flux across the boundary. 
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The short memory approximation completely ignores the possibility of 
a correlated later return to the same boundary. This is why it may fail in 
some cases. One hopes that the cells have been constructed "sensibly," and 
that the dynamical behavior is "sufficiently complex," so that once the 
system has entered a cell, it does not remember how it got there. If so, one 
then has a remarkably simple way to estimate the transition rates between 
cells. 

5. A C A U T I O N A R Y  E X A M P L E  

We conclude with a short discussion of a simple dynamical model for 
which the short memory approximation seems to be very reasonable but is 
wrong. A detailed analysis of the model will be presented elsewhere(9); 
here, only one numerical result is described. 

A single particle moves freely, except for elastic collisions, through a 
periodic linear array of rooms connected by windows; see Fig. 1. Each 
room has size 1 • 1. The windows are symmetrically centered on the walls 
and have length W. The particle starts out with the vector velocity v x = 1, 

Vy = + V. The basic time unit for motion in the x direction is t = 1. 
Whenever the particle collides with a wall, vx changes sign and Vy stays 
constant. Whenever the particle arrives at a window, it moves into the 
adjoining room. 

If the windows are fully closed, the particle rattles around in one room. 
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Fig. 1. The  box mode l  is i l lustrated.  The  curve  is the m e a n  squared  d i sp l acemen t  of the box  

n u m b e r  as a funct ion  of time, for V = 0.397109 and  W = 0.002. 
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If V is a rational number, the orbit is periodic, but if V is irrational, the 
motion is ergodic; the trajectory ultimately fills the whole room. 

Now suppose that the windows are open but that their size W is much 
smaller than 1. We expect, intuitively, that the particle makes very many 
randomizing bounces inside a room (if V is irrational) until it finds a 
window and moves to the next room, bounces again until another window 
is found, etc. This suggests that the motion between rooms is random or 
diffusive. In fact, the discussion just given of the short memory approxima- 
tion to the transition rates between adjoining cells is very easy to apply to 
this model; the transition rate is W/2.  Thus the mean squared displace- 
ment (in room numbers) should increase with time linearly as ((AN) 2> 
= WT. 

But this is not what actually happens. Figure 1 shows a computer 
display of the mean squared displacement for the initial particle velocity 
V =  0.397109, and the window size W =  0.002. (The mean squared dis- 
placement is an average over the y component of the initial particle 
position. If the motion is ergodic, this is also a time average.) Because the 
computer does not recognize an irrational number, the motion is actually 
periodic. The computer run shown here extends to t = 65000, which is 
much shorter than the period. The initial slope of this curve is exactly what 
is predicted by the short memory approximation. Evidently this approxima- 
tion is not valid here. 

This peculiar behavior can be fully explained by a careful mathemati- 
cal analysis of the model, which will be published elsewhere. It is associated 
with the Diophantine approximations to the irrational number V, V N 
= PN/QN where PN and QN are integers that increase very rapidly with the 
order of approximation N. In particular, the denominators play a central 
role in determining the dynamical behavior. At times t = Q~, the particle 
"remembers" that V is almost rational. 
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